www.hpcg-benchmark.org

# HPCG UPDATE: ISC'15

Jack Dongarra Michael Heroux Piotr Luszczek

# **HPCG Snapshot**

- High Performance Conjugate Gradient (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
  - Dense and sparse computations.
  - Dense and sparse collective.
  - Multi-scale execution of kernels via MG (truncated) V cycle.
  - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).

# Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain:
- Process layout:
- Global domain:
- Sparse matrix:
  - 27 nonzeros/row interior.
  - 8 18 on boundary.
  - Symmetric positive definite.

 $(n_x \times n_y \times n_z)$ 

 $(np_x \times np_y \times np_z)$ 

 $(n_x * np_x) \times (n_y * np_y) \times (n_z * np_z)$ 



27-point stencil operator

# Merits of HPCG

- Includes major communication/computational patterns.
  - Represents a minimal collection of the major patterns.
- Rewards investment in:
  - High-performance collective ops.
  - Local memory system performance.
  - Low latency cooperative threading.
- Detects/measures variances from bitwise reproducibility.
- Executes kernels at several (tunable) granularities:
  - nx = ny = nz = 104 gives
  - nlocal = 1,124,864; 140,608; 17,576; 2,197
  - ComputeSymGS with multicoloring adds one more level:
    - 8 colors.
    - Average size of color = 275.
    - Size ratio (largest:smallest): 4096
  - Provide a "natural" incentive to run a big problem.

# HPL vs. HPCG: Bookends

- Some see HPL and HPCG as "bookends" of a spectrum.
  - Applications teams know where their codes lie on the spectrum.
  - Can gauge performance on a system using both HPL and HPCG numbers.

#### **HPCG Status**

### Special Issue: International Journal of High Performance Computer Applications

- 1. Reference HPCG.
- 2. Intel.
- 3. Nvidia.
- 4. NUDT.
- 5. Riken.
- 6. Coming a little later: IBM.
- Discussion and results from vendor optimizations.
- Articles in final review.
- Some highlights...

# Rewards investment high performance collectives.

"Edison spends only 1.9% of the total time in allreduce while SuperMUC, Occigen, and Stampede spend 12.9%,5.9%, and 22.0%, respectively. We believe this difference primarily comes from that Edison uses a low-diameter high-radix Aries network with Dragonfly topology."

#### Intel HPCG Paper

# **Collectives futures**

 "Addressing the bottleneck in collective communications will be also an important challenge as the collectives are shown to often take well above 10% of the total time.
Even though high-radix Dragonfly topology considerably speedups the collectives, we envision that continued innovation in network infrastructure will be necessary due to ever increasing concurrency in high performance computing systems."

### Impact broader set of computations

"The optimizations described in this paper are not limited to the HPCG benchmark and can be also applicable to other problems and sparse solvers as exemplified by our evaluation with unstructured matrices shown in [our previous report]."

#### Looking toward next generation memories

"We expect challenges and opportunities laid out for HPCG in the next few years. One of the significant challenges will be effective use of emerging memory technologies and the accompanied diversification of memory hierarchy."

#### **Detecting FP Variations (Reproducibility)**

Residual=4.25079640861055785883e-08 (0x1.6d240066fda73p-25) Residual=4.25079640861032293954e-08 (0x1.6d240066fd910p-25) Residual=4.25079640861079079289e-08 (0x1.6d240066fdbd3p-25) Residual=4.25079640861054528568e-08 (0x1.6d240066fda60p-25) Residual=4.25079640861068491377e-08 (0x1.6d240066fdb33p-25) Residual=4.25079640861059094605e-08 (0x1.6d240066fdb33p-25)

"The code correctly identified small variations in the residuals, caused by the network off-loading collectives. There is a small improvement in performance but the offloading collectives introduce a small non-reproducibility."

### Vendor improvement: Intel 4X



Fig. 5: The impact of optimizations on the Xeon Phi performance of SymGS parallelized with task scheduling.

- Ref.: the reference implementation ran with 240 MPI ranks
- +Locality: storage layout optimization for locality (Section IV-A1)
- +Prefetch: software prefetches
- +SELLPACK: vectorization-friendly matrix storage format [43]
- +P2P: point-to-point synchronization instead of barriers
- +Sparsification: eliminating unnecessary synchronization [10]

# Next (and last) Major Version 3.X

- Concern: Too much like STREAMS.
  - Not true, from previous results.
  - Still: Interested in mixing in address/integer/logic instructions.
- Approach:
  - Time problem generation.
  - Include this time as part of overhead.
  - Overhead: Generation + Vendor optimization costs.

#### www.hpcg-benchmark.org

# HPCG 2.4 Profile (Allinea output)

| 000                                        |                    | X xhpcg_32p_8t_2015-03-18                          |
|--------------------------------------------|--------------------|----------------------------------------------------|
| <u>File E</u> dit <u>V</u> iew <u>W</u> ir | ndow <u>H</u> elp  |                                                    |
| Profiled: xhpcg on 32                      | processes, 32 core | s (1 per process) Started: Wed Mar 18 11:16:37 201 |
| Main thread act                            | ivity              |                                                    |
| CPU floating-pg                            | pint (%)           |                                                    |
| 0.0 - 100.0                                | (37.0 avg)         |                                                    |
| CPU integer (%)                            | i.                 | August A                                           |
| 0.0 - 100.0                                | ( 4.3 avg )        |                                                    |
| CPU memory ac                              | cess (%)           | A Alto an      |
| 0.0 - 100.0                                | (80.2 avg)         | North A                                            |
| CPU fp vector (                            | 36)                | a contra ta contrato contrato                      |
| 0.0 - 90                                   | (28.5 avg)         | 2 min min                                          |
| CPU integer ve                             | ctor (%)           |                                                    |
| 0.0 - 0.0                                  | (0.0 avg)          |                                                    |
| CPU branch (%)                             |                    |                                                    |
| 0.0 - 100.0                                | (3.6 avg)          |                                                    |

# **Other Items**

- Reference version on GitHub:
  - https://github.com/hpcg-benchmark/hpcg
  - Website: hpcg-benchark.org, includes results auto-upload from yaml.
  - Mail list <u>hpcg.benchmark@gmail.com</u>
- Next event: SC'15:
  - 40 entries so far, expect more.
  - Release of HPCG 3.0.
  - Transition from version 2.4 to 3.0 is under discussion.

# Summary

- HPCG is
  - Addressing original goals.
  - Rewarding vendor investment in features we care about.
- HPCG has traction.
  - Original goal of top 50 systems seems reachable, and more.
- Biggest challenge (my bias):
  - Pre-mature conclusions based on incomplete analysis of reference version.
  - IJHPCA papers should dispel these concerns.
- Version 3.X will (hopefully) be the final major version.
- HPL and HPCG make a nice set of bookends.
  - Anyone got a (wood) router?

# HPCG RANKINGS JULY 2015

#### **HPCG** Highlights

- 40 Systems:
  - Up from 25 at SC'14 and 15 at ISC'14.
  - Most entries from the very top of the TOP500 list.
- New supercomputers (also coming to TOP500) are:
  - KAUST Shaheen II
  - Moscow State: Lomonosov 2
- Strong showing from Japan and NEC SX machines:
  - Achieve over 10% of peak performance with HPCG
- Updated results from TACC with larger scale of the system tested.
- IBM BlueGene machines make their first appearance on the list.









IN COLLABORATION WITH





SPONSORED BY



# HPCG Results, July 2015

| Rank | Site                                | Computer                                                                        | Cores     | HPL<br>Rmax<br>(Pflops) | HPL<br>Rank | HPCG<br>(Pflops) | HPCG<br>/HPL | % of<br>Peak |
|------|-------------------------------------|---------------------------------------------------------------------------------|-----------|-------------------------|-------------|------------------|--------------|--------------|
| 1    | NSCC / Guangzhou                    | Tianhe-2 NUDT,<br>Xeon 12C 2.2GHz + <mark>Intel Xeon</mark><br>Phi 57C + Custom | 3,120,000 | 33.9                    | 1           | .580             | 1.7%         | 1.1%         |
| 2    | RIKEN Advanced Inst for<br>Comp Sci | K computer Fujitsu SPARC64<br>VIIIfx 8C + Custom                                | 705,024   | 10.5                    | 4           | .461             | 4.4%         | 4.1%         |
| 3    | DOE/OS Oak Ridge Nat Lab            | Titan, Cray XK7 AMD 16C +<br>Nvidia Kepler GPU 14C +<br>Custom                  | 560,640   | 17.6                    | 2           | .322             | 1.8%         | 1.2%         |
| 4    | DOE/OS<br>Argonne Nat Lab           | Mira BlueGene/Q, Power BQC<br>16C 1.60GHz + Custom                              | 786,432   | 8.59                    | 5           | .167             | 1.9%         | 1.7%         |
| 5    | NASA Ames                           | Pleiades, SGI ICE X, Intel<br>2.6,2.8,2.5 GHz+ IB                               | 186,288   | 4.09                    | 11          | .132             | 3.2%         | 2.7%         |
| 6    | Swiss CSCS                          | Piz Daint, Cray XC30, Xeon 8C<br>+ <mark>Nvidia Kepler 14C</mark> + Custom      | 115,984   | 6.27                    | 6           | .125             | 2.0%         | 1.6%         |
| 7    | KAUST                               | Shaheen II,Cray XC40, Xeon<br>16C 2.3GHz + Custom                               | 196,608   | 5.54                    | 7           | .114             | 2.1%         | 1.6%         |
| 8    | Texas Advanced Computing<br>Center  | Stampede, Dell Intel 8c + Intel<br>Xeon Phi 61c + IB                            | 522,080   | 5.17                    | 8           | .097             | 1.9%         | 1.0%         |
| 9    | Leibniz Rechenzentrum               | SuperMUC, Intel 8C + IB                                                         | 147,456   | 2.90                    | 20          | .0833            | 2.9%         | 2.6%         |
| 10   | EPSRC/University of<br>Edinburgh    | ARCHER - Cray XC30, Xeon<br>12C 2.7GHz + Custom                                 | 118,080   | 1.64                    | 34          | .0808            | 4.9%         | 3.2%         |

# HPCG Results, July 2015

| Rank | Site                                            | Computer                                                        | Cores   | HPL<br>Rmax<br>(Pflops) | HPL<br>Rank | HPCG<br>(Pflops) | HPCG<br>/HPL | % of<br>Peak |
|------|-------------------------------------------------|-----------------------------------------------------------------|---------|-------------------------|-------------|------------------|--------------|--------------|
| 11   | DOE/OS<br>LBNL                                  | Edison, Cray XC30, Xeon, 12c,<br>2,4GHz + Custom                | 133,824 | 1.66                    | 33          | .0786            | 4.8%         | 3.1%         |
| 12   | Plasma Simulator                                | Fujitsu FX100, Sparc64 Xifx<br>32C + custom                     | 82,944  | 2.38                    | 27          | .073             | 3.1%         | 2.8%         |
| 13   | GSIC Center TiTech                              | Tsubame 2.5 Xeon 6C,<br>2.93GHz + <mark>Nvidia K20x</mark> + IB | 76,032  | 2.79                    | 22          | .0725            | 2.6%         | 1.3%         |
| 14   | HLRS/Universitaet Stuttgart                     | Hornet Cray XC40, Xeon<br>2.5GHz + custom                       | 94,656  | 2.76                    | 23          | .066             | 2.4%         | 1.7%         |
| 15   | Max-Planck                                      | iDataPlex Xeon 10C, 2.8GHz +<br>IB                              | 65,320  | 1.28                    | 46          | .061             | 4.8%         | 4.2%         |
| 16   | Earth Simulator                                 | NEC SX-ACE 4C, 1 GHz +<br>custom                                | 8,192   | 0.487                   |             | .058             | 12%          | 11%          |
| 17   | CEA/TGCC-GENCI                                  | Curie thin nodes Bullx B510<br>Intel Xeon 8C 2.7 GHz + IB       | 77,184  | 1.36                    | 43          | .051             | 3.8%         | 3.1%         |
| 18   | Exploration and Production<br>Eni S.p.A.        | HPC2, Intel Xeon 10C 2.8 GHz<br>+ Nvidia Kepler 14C + IB        | 62,640  | 3.00                    | 17          | .049             | 1.6%         | 1.2%         |
| 19   | Grand Equipement National<br>de Calcul Intensif | Occigen Bullx Xeon 12C<br>2.6Ghz + IB                           | 50,544  | 1.63                    | 35          | .045             | 2.8%         | 2.2%         |
| 20   | Oakleaf-FX                                      | PIMEHPC FX10, Sparc64 16C,<br>1.85 GHz + custom                 | 76,800  | 1.04                    | 64          | .0448            | 4.3%         | 3.9%         |

#### Peak, HPL Pflop/s



#### Peak, HPL, HPCG Pflop/s



# **HPCG Tech Reports**

Toward a New Metric for Ranking High Performance Computing Systems

• Jack Dongarra and Michael Heroux HPCG Technical Specification

 Jack Dongarra, Michael Heroux, Piotr Luszczek SANDIA REPORT SAND2013-8752 Unlimited Release Printed October 2013

Prepared by Sandia National Laboratoria

#### **HPCG Technical Specification**

Michael A. Heroux, Sandia National Laboratories<sup>1</sup> Jack Dongarra and Piotr Luszczek, University of Tennessee

> SANDIA REPORT SAND2013-4744 Unlimited Release Printed June 2013

#### Toward a New Metric for Ranking High Performance Computing Systems

Jack Dongarra, University of Tennessee Michael A. Heroux, Sandia National Laboratories<sup>1</sup>

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC64-94AL85000.

Approved for public release; further dissemination unlimited.

and the states

28

<sup>1</sup> Corresponding Author, maherou@sandia.gov

Sandia National Laboratories

# By Region



# By Country







# **By Network Detail**



# By CPU/Accelerator



### By CPU/Accelerator - Details



# By Market Segment



# By Integrator

